Energy Batteries for EVs and PHEVs: Candidate Technologies and Issues

Andrew Burke
Institute of Transportation Studies
University of California- Davis
Davis, California 95616
afburke@ucdavis.edu

ARB ZEV Technology Symposium Sacramento, California September 27, 2006

What defines an 'Energy Battery''?

- Sized by an energy requirement and designed to have a high Wh/kg
- The power requirement is modest and usually does not size the battery
- The battery is deep discharged in regular use (60-70% SOC)
- High cycle life 2000-3000 cycles
- Low Cost \$/kWh less than \$250/kWh
- Safety, thermal management, and monitoring are critical

Candidate Technologies

- Nickel metal hydride
- Lithium-ion
- Lithium polymer
- Sodium metal chloride (Zebra-300 degC)

Battery characteristics

- Energy density Wh/kg, Wh/L
- Pulse power density W/kg, W/L
- Calendar and cycle life
- Thermal management
- Safety and monitoring requirements
- Cost \$/kWh, \$/kW

Issues

- Trade-offs between energy density, power density,
 cycle life, safety, and cost
- Effect of discharge/charge use patterns on cycle life
- Safety/failure modes and monitoring requirements
- Cost, Cost, and Cost in high production

Baseline characteristics of EV and HEV batteries

Battery type	Wh/kg	W/kg	\$/kWh
Lead-acid			
Energy bat.	35	200	150
Power bat.	25	315	300
<u>NickelMetHyd</u>			
Energy bat.	75	200	500
Power bat.	45	800	800
Sodium metal			
<u>chloride</u>			
(Zebra -300			
deg C)			
Energy bat.	100	200	400
Lithium-ion			
Energy bat.	120	400	500
Power bat.	75	1200	800
<u>Ultracapacitors</u>			
Carbon/carbon	4.5	1500	\$10/Wh

Agenda for the session

- 1. Andrew Burke (10 min), <u>Energy batteries for EVs and PHEVs</u>: Candidate Technologies and Issues, ITS-Davis
- 2. Tien Duong (20 min.), Review of the DOE/USABC battery program, US DOE
- 3. Michael Andrew (20 min.), <u>Lithium-ion: Enabling a Spectrum of Alternate</u>
 Fuel Vehicles, Johnson Controls
- 4. Mark Duvall (20 min.), <u>Battery considerations and test results for lithium-ion batteries in the Sprinter PHEV</u>, EPRI
- 5. Andrew Chu (20 min.), <u>Design considerations and the status and future plans</u> for lithium-ion batteries using iron phosphate in the cathode, A123 Battery Co.
- 6. Evan House (20 min.), Status of lithium-ion batteries using lithium titanate in the anode (safety, fast charging, and long cycle life), Altrairnano

